Important Notes
- Single Column Per Request: This endpoint only allows adding one column at a time. To add multiple columns, make separate API calls for each.
- Column Order Matters: Columns execute left to right. A column can only reference columns to its left.
- Unique Names Required: Each column name must be unique within the pipeline.
- Dataset Columns Protected: You cannot overwrite columns that come from the dataset.
Column Types
Primary Types
Execute prompts, call APIs, or gather human input:PROMPT_TEMPLATE- Execute a prompt from your registryENDPOINT- Call external API endpointsMCP- Execute MCP server functionsHUMAN- Collect human evaluation inputCODE_EXECUTION- Run Python or JavaScript codeCODING_AGENT- Use AI to process dataCONVERSATION_SIMULATOR- Simulate multi-turn conversationsWORKFLOW- Execute PromptLayer workflows
Evaluation Types
Compare, validate, and score outputs:LLM_ASSERTION- Natural language assertions using LLMsAI_DATA_EXTRACTION- Extract data using AICOMPARE- Compare two columns for equalityCONTAINS- Check if text contains a valueREGEX- Match regular expression patternsREGEX_EXTRACTION- Extract text using regexCOSINE_SIMILARITY- Calculate semantic similarityABSOLUTE_NUMERIC_DISTANCE- Calculate numeric difference
Helper Types
Transform and manipulate data:JSON_PATH- Extract from JSON using JSONPathXML_PATH- Extract from XML using XPathPARSE_VALUE- Convert between data typesAPPLY_DIFF- Apply diff patchesVARIABLE- Static valuesASSERT_VALID- Validate data formatsCOALESCE- First non-null valueCOMBINE_COLUMNS- Combine multiple columnsCOUNT- Count characters/words/paragraphsMATH_OPERATOR- Mathematical operationsMIN_MAX- Find minimum or maximum
Configuration Examples
PROMPT_TEMPLATE
LLM_ASSERTION
COMPARE
CONTAINS
CODE_EXECUTION
ENDPOINT
JSON_PATH
VARIABLE
Batch Adding Columns
Since columns must be added one at a time, here’s a pattern for adding multiple columns:Column Reference Syntax
When configuring columns that reference other columns:- Dataset columns: Use exact column name from dataset (e.g.,
"question") - Previous columns: Use the name you assigned (e.g.,
"AI Response") - Variable columns: Reference by their name
Error Handling
The endpoint validates:- Column type is valid
- Column name is unique within the pipeline
- Configuration matches the column type schema
- Referenced columns exist (for dependent columns)
- User has permission to modify the pipeline
400: Invalid configuration or duplicate column name403: Cannot overwrite dataset columns or lacking permissions404: Report not found or not accessible
Headers
API key to authorize the operation. Can also use JWT authentication.
Body
The ID of the evaluation pipeline to add this column to.
x >= 1The type of evaluation or transformation this column performs. Must be one of the supported column types.
ABSOLUTE_NUMERIC_DISTANCE, AI_DATA_EXTRACTION, ASSERT_VALID, CONVERSATION_SIMULATOR, COALESCE, CODE_EXECUTION, COMBINE_COLUMNS, COMPARE, CONTAINS, COSINE_SIMILARITY, COUNT, ENDPOINT, MCP, HUMAN, JSON_PATH, LLM_ASSERTION, MATH_OPERATOR, MIN_MAX, PARSE_VALUE, APPLY_DIFF, PROMPT_TEMPLATE, REGEX, REGEX_EXTRACTION, VARIABLE, XML_PATH, WORKFLOW, CODING_AGENT Display name for this column. Must be unique within the pipeline. This name is used to reference the column in subsequent steps.
1 - 255Column-specific configuration. The schema varies based on column_type. See documentation for each type's requirements.
Optional position for the column. If not specified, the column is added at the end. Cannot overwrite dataset columns.
x >= 0
