run()
method is a core function of the PromptLayer SDK, allowing you to execute prompts and interact with various LLM providers using a unified interface.
Note: For any LLM provider you plan to use, you must set its corresponding API key as an environment variable (for example,OPENAI_API_KEY
,ANTHROPIC_API_KEY
,GOOGLE_API_KEY
etc.).
The PromptLayer client does not support passing these keys directly in code. If the relevant environment variables are not set, any requests to those LLM providers will fail.
For using Gemini models through Vertex AI with pl.run: Python SDK: Set these environment variables:
GOOGLE_GENAI_USE_VERTEXAI=true
GOOGLE_CLOUD_PROJECT="<google_cloud_project_id>"
GOOGLE_CLOUD_LOCATION="region"
GOOGLE_APPLICATION_CREDENTIALS="path/to/google_service_account_file.json"
JavaScript SDK: Set these environment variables:
VERTEX_AI_PROJECT_ID="<google_cloud_project_id>"
VERTEX_AI_PROJECT_LOCATION="region"
GOOGLE_APPLICATION_CREDENTIALS="path/to/google_service_account_file.json"
For using Claude models through Vertex AI with pl.run: Python SDK: Set these environment variables:
ANTHROPIC_VERTEX_PROJECT_ID="<google_cloud_project_id>"
CLOUD_ML_REGION="region"
GOOGLE_APPLICATION_CREDENTIALS="path/to/google_service_account_file.json"
JavaScript SDK: Set these environment variables:
GOOGLE_APPLICATION_CREDENTIALS="path/to/google_service_account_file.json"
CLOUD_ML_REGION="region"
prompt_name
/ promptName
(str, required): The name of the prompt to run.prompt_version
/ promptVersion
(int, optional): Specific version of the prompt to use.prompt_release_label
/ promptReleaseLabel
(str, optional): Release label of the prompt (e.g., “prod”, “staging”).input_variables
/ inputVariables
(Dict[str, Any], optional): Variables to be inserted into the prompt template.tags
(List[str], optional): Tags to associate with this run.metadata
(Dict[str, str], optional): Additional metadata for the run.group_id
/ groupId
(int, optional): Group ID to associate with this run.model_parameter_overrides
/ modelParameterOverrides
(Union[Dict[str, Any], None], optional): Model-specific parameter overrides.stream
(bool, default=False): Whether to stream the response.provider
(str, optional): The LLM provider to use (e.g., “openai”, “anthropic”, “google”). This is useful if you want to override the provider specified in the prompt template.model
(str, optional): The model to use (e.g., “gpt-4o”, “claude-3-7-sonnet-latest”, “gemini-2.5-flash”). This is useful if you want to override the model specified in the prompt template.request_id
: Unique identifier for the request.raw_response
: The raw response from the LLM provider.prompt_blueprint
: The prompt blueprint used for the request.provider
and model
at runtime to choose a different LLM provider or model. This is useful if you want to use a different provider than the one specified in the prompt template. PromptLayer will automatically return the corrent llm_kwargs
for the specified provider and model with default values for the parameters corresponding to the provider
and model
.
model
and provider
in order to run the request against correct LLM provider with correct parameters.